Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 16 résultats dans 114 notices du site.
Mot(s)-clef(s) recherché(s) : théorie des nombres

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 2_000001.jpg
Texte rédigé mais incomplet? sur le "dualisme" dans la théorie des modules de nombres. (Description à compléter page à page)

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 3-0001.jpg
Comparaison entre les modules (colonne de droite) et les groupes dans l'article de Frobenius et Stickelberger, "Ueber Gruppen von vertauschbaren Elementen", Journal für die reine und angewandte Mathematik, 1886. Parallèle entre les deux approches, qui revient à un parallèle entre cas multiplicatif et cas additif pour les groupes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 4_000001.jpg
Page 11r : Complexe de nombres et éléments distingués. Au crayon sur une invitation de 1893.
Page 11v : calculs de + et - pour des éléments dont la nature n'est pas précisée. Tableaux.
Page 12r : Calculs suite. Calculs sur nombres.
Page 12v : tableau PGCD / PPCM, tableau divisibilité, calculs normes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 7_000001.jpg
Calculs sur des modules finis.
Congruences, théorie des nombres.

Théorème page 16v : Soit un module dont la base a un élément
11, ..., αmm]= o=\sum[αii]=[w],
et soit
a =\sum [αi],
b=\sum [βi],
c w=\sum [αiβi'i'βi],
alors on peut trouver 2 modules dont la base a un élément, [α], [β] tels que
a=[α]+c
b=[β]+c

Preuve interrompue.

Le théorème suit-il des calculs ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 8_000001.jpg
Calculs sur des modules finis. Congruences, théorie des nombres.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 16_000001.jpg
Soit [m,n,p]=[1], alors on doit choisir es nombres entiers rationnels u, v tels que k=[mv,mu-pv]=[1]. Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 17_000001.jpg
Suite (ou morceau) des calculs de la page précédente.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 19_000001.jpg
Suite des calculs de la page précédente. Vers la fin de la page, question supplémentaire : Peut-être choisir q mod p tel quel q soit relativement premier à n ? Réponse au problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 18_000001.jpg

Soient [mα, pα+nβ] et uα+vβ; trouver le plus petit nombre naturel e pour lequel e(uα+vβ)=xmα+y(pα+nβ), et eu=mx+py ; ev=un.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 20_000001.jpg
Calculs sur des modules finis et sur leur base.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 21_000001.jpg

o=[α,β] irréductible, et soit le multiple m=[α',β'] avec α'=caα', β'=a'aα+bβ ; [c,a']=[1] ; a, b entiers naturels. Trouver tous les modules n=[α'', β''] qui sont diviseurs de m et multiples de o.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 22_000001.jpg
Trouver tous les modules [aα,cα+bβ] qui sont multiples de [α,β] et diviseurs de [mα, pα+nβ]. Résolution du problème.

Auteur : Dedekind, Richard
modules old_000003.jpg
Texte rédigé sur la théorie des modules. Titre alternatif : "Théorèmes généraux sur les modules, ordres et congruences". Définition des opérations et étude de diverses propriétés. Un des premiers écrits sur le sujet.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 1_000001.jpg
Ensemble de calculs et petites rédactions autour des opérations et de la divisibilité entre modules.

Auteur : Dedekind, Richard
X-10-00069 p 41.pdf
Théorème daté du 27 oct. 1890.
Esquisse de preuve.

Auteur : Dedekind, Richard
X-10-00031 p 53-57.pdf

Corrections sur le §184 (= §178 de la 3e édition) pour l'édition de 1894 des Vorlesungen de Dirichlet.
Il s'agit du paragraphe sur le nombre de classes d'idéaux.

Attention les pages dans le désordre. L'ordre de lecture semble être : p. 57v (57r = imprimé) puis p. 53 à p. 56.

Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2