Transcription Transcription des fichiers de la notice - Prima Calculi LH 35, 4, 13, 10 5v chargé d'édition/chercheur PARIS
http://eman-archives.org

[Passages (18) et (19) entièrement raturés]

(18) Theor. Addenda ascribuntur signis retentis. Sit \(f\) cui addi debet \(a-b\) fiet \(f+a-b\). Sit \(a-b=e\). Ergo si ad \(f\) addi debet \(e\), fit \(f+e\) (per 6). Ergo pro e substituendo tuendo valorem \( \cancel{a-b}\) (per 2) qui est \(a-b\) (ex hyp.) fiet \(f+a-b\) Q.E.D.

(19) Adde subtrahenda ascribuntur signis mutatis, + in – vel – in + F cui detrahi debet \(a-b\) fiet \( f-\overline{a+b} \) \(f-\overline{a-b}=f+a-b\). Nam \(f- \overline{a-b}=f-a--b\) et (per

[Passages (19) et (20) ajoutés en marge]

(19) Theor. -\(+a=-a\) aut \(+-a=-a\)       [texte raturé - illisible]     Patet ex 8.

(20) Theor. In omni aequatione licet membrum abjicere ab una parte et signo contrario affectum ponere in altera. Sit \(f+a-b=h\). Dico fore \(f=h-a+b\). Nam in aequatione (ex hypoth. vera) \(f+a-b=h\) addatur utrobique \(-a+b\), fiet inde \(f+a-b-a+b=h-a+b\), id est (per 11) \(f=h-a+b\). Q.E.D.

[Passages (18) et (19) entièrement raturés]

(18) Theor. Addenda ascribuntur signis retentis. Sit \(f\) cui addi debet \(a-b\) fiet \(f+a-b\). Sit \(a-b=e\). Ergo si ad \(f\) addi debet \(e\), fit \(f+e\) (per 6). Ergo pro e substituendo tuendo valorem a-b (per 2) qui est \(a-b\) (ex hyp.) fiet \(f+a-b\) Q.E.D.

(19) Adde subtrahenda ascribuntur signis mutatis, + in – vel – in + F cui detrahi debet \(a-b\) fiet \(f \overline-a+b\)\(f-a-b=f+a-b\). Nam \(f- f-a- -b=f-a--b\) et (per

[Passages (19) et (20) ajoutés en marge]

(19) Theor. -\(+a=-a\) aut \(+-a=-a\)       [texte raturé - illisible]     Patet ex 8.

(20) Theor. In omni aequatione licet membrum abjicere ab una parte et signo contrario affectum ponere in altera. Sit \(f+a-b=h\). Dico fore \(f=h-a+b\). Nam in aequatione (ex hypoth. vera) \(f+a-b=h\) addatur utrobique \(-a+b\), fiet inde \(f+a-b-a+b=h-a+b\), id est (per 11) \(f=h-a+b\). Q.E.D.