Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 144 résultats dans 144 notices du site.

Auteur : Dedekind, Richard
p.36.pdf
Description du Dualgruppe formé par 3 idéaux. Mélange notation1 et notation3. Lié à article de 1897.

Auteur : Dedekind, Richard
n=4.pdf
Listes et tableaux très propres pour n=4. Clefs de lectures et calculs initiaux se trouvent dans les 2 dernières pages. Dedekind travaille avec "4 éléments (e.g. Idealbrücke).

Auteur : Dedekind, Richard
p11.jpg
Étude de la "Verwandschafdt" et des "familles" de modules telles que définis dans les Vorlesungen de Dirichlet (référence à édition de 1871, p. 490). Calcul de "distances" entre modules (ie nombres de "marches" dans "l'escalier") et organisation de ces distances dans un tableau.

Auteur : Dedekind, Richard
X-10-00030.pdf
Recherches autour des propriétés des opérations pour 4 modules. Notation mixte car la notation 123 ne permet pas d'aller très loin.
Dessins pour représenter les "niveaux".

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00062.pdf

Page 34r : première moitié "Zweigliedrige Schaaren Ω, Ω'. Directe Basen Verwandschaft" raturé.
Deuxième moitié Zweigliedrige Moduln.

Mots-clés :

Auteur : Dedekind, Richard
X-10-00069 p 41.pdf
Théorème daté du 27 oct. 1890.
Esquisse de preuve.

Auteur : Dedekind, Richard
X-10-00063 p 35.pdf
Calculs sur les modules finis a, b : calculs des bases de a–b

Mots-clés :

Auteur : Dedekind, Richard
X-10-00064 p 36+42.pdf
Courts calculs sur les modules finis.

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00065 p 37.pdf
Recto : calculs qui ne sont pas liés aux modules ? Verso : quelques calculs sur les modules finis et la divisibilité

Auteur : Dedekind, Richard
X-10-00066 p 38.pdf
Récapitulatif d'égalités pour les opérations entre modules. Organisation en colonnes pour mettre en avant la dualité. Calculs sur les bases (bien que les modules ne soient pas présentés comme modules finis ?).

Mots-clés : , ,

Auteur : Dedekind, Richard
X-10-00067 p 39.pdf
Calculs sur les bases des modules finis. À lire avec la page précédente, ie l'item 285 (X 10 p. 38) ?

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00068 p 40.pdf
Calculs et tableau visiblement liés à la page suivante (p. 41, item 289)

Mots-clés :

Auteur : Dedekind, Richard
X-10-00070 p 43.pdf
Esquisse de preuve du Modulgesetz.

Auteur : Dedekind, Richard
X-10-00029 p 51.pdf
Colonnes donnant notamment certaines relations entre modules. Manque de contexte pour être sûr de ce que signifient les autres colonnes + le tableau semble ne pas avoir été terminé.

Auteur : Dedekind, Richard
X-10-00024 p 44.pdf
Calculs sur des différentielles et quotients différentiels. Pas de contexte.

Auteur : Dedekind, Richard
X-10-00025.pdf
Grand feuillet plié en deux : - égalités / Modulgesetz - égalités / nombre de classes

Auteur : Dedekind, Richard
X-10-00026.pdf
Pages mélangées. p. 46r : quelques calculs, suite de p. 47v. p. 46v : vierge. p.47r : quelques recherches sur le Modulgesetz au crayon par dessus une invitation. p. 47v : calculs sur les modules finis (encre).

Auteur : Dedekind, Richard
X-10-00027.pdf
Tentative de généralisation du Modulgesetz (non nommé). Notation mixte. Plusieurs théorèmes avec tentative de preuves.
Fin du manuscrit : Einfacher ausgedrückt + mention de la dualité. Ces réflexions autour de l'application du Modulgesetz à un nombre quelconque de modules donne :
(d1-m)+(d2-m)+...+(dn-m)=d+m avec d=d1-d2-...
et son dual.

Auteur : Dedekind, Richard
X-10-00028 p 49.pdf
Feuillet commence par un tableau non terminé. Liste des Treppen. Petits calculs autour du Modulgestz. NB : La disposition des écritures permet-elle de mettre en avant la "symétrie" ou "dualité" ?

Auteur : Dedekind, Richard
X-10-00071 p 50.pdf
Deux théorèmes avec (esquisse de) preuve :
- Soit d module non divisible par des modules p, q, alors il existe toujours des nombres dans d qui sont ni dans p ni dans q.
- Mais dès qu'on considère trois modules p, q, r, le théorème cesse d'être valide. On peut construire une infinité d'exemples.

Mots-clés :

Auteur : Dedekind, Richard
Brouillon1900.pdf
Première rédaction de l'article de 1900

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 39_000001.jpg
Brefs calculs et tableaux pour des éléments "de type module" où l'opération est représentée par φ.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 1_000001.jpg
Dualgruppe (sans Modulgesetz) généré par a, b, c avec la condition spéciale Annahme : b-c=c-a=a-b. Propriétés du Dualgruppe étudié. Références à des lois numérotées mais lesquelles ? lois définissant les Dualgruppen ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 25_000001.jpg
Calculs sur des modules et petits tableaux récapitulatifs. Tableaux donnant les "nächste Vielfache" et "Nächste Theiler" (chaînes). Brève considération d'une représentation (Abbildung) dans un Modulgruppe.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 20_000001.jpg
Calculs sur des modules finis et sur leur base.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 21_000001.jpg

o=[α,β] irréductible, et soit le multiple m=[α',β'] avec α'=caα', β'=a'aα+bβ ; [c,a']=[1] ; a, b entiers naturels. Trouver tous les modules n=[α'', β''] qui sont diviseurs de m et multiples de o.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 22_000001.jpg
Trouver tous les modules [aα,cα+bβ] qui sont multiples de [α,β] et diviseurs de [mα, pα+nβ]. Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 37-page-001.jpg
Tableau pour la théorie des trois modules, relations de divisibilité : le signe + signifie que le module sur la ligne est diviseur du module dans la colonne. Le signe – signifie que le module sur la ligne est multiple du module dans la colonne.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 23_000001.jpg
Soit deux modules a,b donnés avec conditions initiales. Trouver tous les modules c qui vérifient a+b

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 24_000001.jpg
Petits calculs sur des modules et nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 26_000001.jpg
Tableau de Nächste Vielfache et Nächste Theiler. Comparaison de deux notations (cf titre) ? Verso Tableau 3 modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 19_000001.jpg
Suite des calculs de la page précédente. Vers la fin de la page, question supplémentaire : Peut-être choisir q mod p tel quel q soit relativement premier à n ? Réponse au problème.

Auteur : Dedekind, Richard
dualismus_000001.jpg
Texte entièrement rédigé, initialement tiré "Sur le dualisme dans la théorie des modules", corrigé plus tard pour être titré "Sur les Dualgruppen". Transcription à venir.

Auteur : Dedekind, Richard
Satze Modulgruppen_000001.jpg
Définition des opérations entre modules, études des propriétés. Certains résultats se retrouvent dans les Dualgruppen, d'autres en théorie des nombres. NB seulement des modules.

Auteur : Dedekind, Richard
p 28_000001.jpg
Théorème sur les modules : Les modules σr (r parcourt les entiers) forment une chaîne donnée, alors un groupe est engendré qui vérifie certaines conditions...
Preuve du résultat.

Auteur : Dedekind, Richard
modules old_000001.jpg
Tableau mettant en avant la dualité entre les deux opérations pour les modules.

Auteur : Dedekind, Richard
modules old_000003.jpg
Texte rédigé sur la théorie des modules. Titre alternatif : "Théorèmes généraux sur les modules, ordres et congruences". Définition des opérations et étude de diverses propriétés. Un des premiers écrits sur le sujet.

Auteur : Dedekind, Richard
quelques pages dont il faut décider si elles vont avec dualismus ou pas_000001.jpg
Etude assez générale semi-rédigée d'un système non-modulaire. Pas de mention des Dualgruppen. Références aux Vorlesungen 1894.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 18_000001.jpg

Soient [mα, pα+nβ] et uα+vβ; trouver le plus petit nombre naturel e pour lequel e(uα+vβ)=xmα+y(pα+nβ), et eu=mx+py ; ev=un.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 17_000001.jpg
Suite (ou morceau) des calculs de la page précédente.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 1_000001.jpg
Ensemble de calculs et petites rédactions autour des opérations et de la divisibilité entre modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 8_000001.jpg
Calculs sur des modules finis. Congruences, théorie des nombres.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 2_000001.jpg
Texte rédigé mais incomplet? sur le "dualisme" dans la théorie des modules de nombres. (Description à compléter page à page)

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 3-0001.jpg
Comparaison entre les modules (colonne de droite) et les groupes dans l'article de Frobenius et Stickelberger, "Ueber Gruppen von vertauschbaren Elementen", Journal für die reine und angewandte Mathematik, 1886. Parallèle entre les deux approches, qui revient à un parallèle entre cas multiplicatif et cas additif pour les groupes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 4_000001.jpg
Page 11r : Complexe de nombres et éléments distingués. Au crayon sur une invitation de 1893.
Page 11v : calculs de + et - pour des éléments dont la nature n'est pas précisée. Tableaux.
Page 12r : Calculs suite. Calculs sur nombres.
Page 12v : tableau PGCD / PPCM, tableau divisibilité, calculs normes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 5_000001.jpg
Pour ρ=0 et δ=1 solution unique des conditions ρ+δ=1, ρc1>b1, δc1>a, alors on doit avoir cdifférent de 0, et de plus c1>a et b1-a=a-b=c3=0. La suite se déduit de la théorie des trois modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 6_000001.jpg
Petits calculs sur des ensembles ("Complex") avec ⊂ et inverses. Peut-être lié à Schröder ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 7_000001.jpg
Calculs sur des modules finis.
Congruences, théorie des nombres.

Théorème page 16v : Soit un module dont la base a un élément
11, ..., αmm]= o=\sum[αii]=[w],
et soit
a =\sum [αi],
b=\sum [βi],
c w=\sum [αiβi'i'βi],
alors on peut trouver 2 modules dont la base a un élément, [α], [β] tels que
a=[α]+c
b=[β]+c

Preuve interrompue.

Le théorème suit-il des calculs ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 9_000001.jpg
Calculs + et - sur des modules finis. Résultats sur les Modulgruppen avec hypothèse b+c=c+a=a+b et a+b+c=d'''' Dans le Modulgruppe généré par 3 modules, il faut que le nächste Vielfache de a, b, c soit a+b+c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 16_000001.jpg
Soit [m,n,p]=[1], alors on doit choisir es nombres entiers rationnels u, v tels que k=[mv,mu-pv]=[1]. Résolution du problème.
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2