Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 115 résultats dans 115 notices du site.

Auteur : Dedekind, Richard
X-10-00031 p 53-57.pdf

Corrections sur le §184 (= §178 de la 3e édition) pour l'édition de 1894 des Vorlesungen de Dirichlet.
Il s'agit du paragraphe sur le nombre de classes d'idéaux.

Attention les pages dans le désordre. L'ordre de lecture semble être : p. 57v (57r = imprimé) puis p. 53 à p. 56.

Auteur : Dedekind, Richard
X-10-00030.pdf
Recherches autour des propriétés des opérations pour 4 modules. Notation mixte car la notation 123 ne permet pas d'aller très loin.
Dessins pour représenter les "niveaux".

Mots-clés : , ,

Auteur : Dedekind, Richard
X-10-00029 p 51.pdf
Colonnes donnant notamment certaines relations < entre modules. Manque de contexte pour être sûr de ce que signifient les autres colonnes + le tableau semble ne pas avoir été terminé.

Auteur : Dedekind, Richard
X-10-00071 p 50.pdf
Deux théorèmes avec (esquisse de) preuve :
- Soit d module non divisible par des modules p, q, alors il existe toujours des nombres dans d qui sont ni dans p ni dans q.
- Mais dès qu'on considère trois modules p, q, r, le théorème cesse d'être valide. On peut construire une infinité d'exemples.

Mots-clés :

Auteur : Dedekind, Richard
X-10-00028 p 49.pdf
Feuillet commence par un tableau non terminé. Liste des Treppen. Petits calculs autour du Modulgestz. NB : La disposition des écritures permet-elle de mettre en avant la "symétrie" ou "dualité" ?

Auteur : Dedekind, Richard
X-10-00027.pdf
Tentative de généralisation du Modulgesetz (non nommé). Notation mixte. Plusieurs théorèmes avec tentative de preuves.
Fin du manuscrit : Einfacher ausgedrückt + mention de la dualité. Ces réflexions autour de l'application du Modulgesetz à un nombre quelconque de modules donne :
(d1-m)+(d2-m)+...+(dn-m)=d+m avec d=d1-d2-...
et son dual.

Auteur : Dedekind, Richard
X-10-00026.pdf
Pages mélangées. p. 46r : quelques calculs, suite de p. 47v. p. 46v : vierge. p.47r : quelques recherches sur le Modulgesetz au crayon par dessus une invitation. p. 47v : calculs sur les modules finis (encre).

Auteur : Dedekind, Richard
X-10-00025.pdf
Grand feuillet plié en deux : - égalités / Modulgesetz - égalités / nombre de classes

Auteur : Dedekind, Richard
X-10-00024 p 44.pdf
Calculs sur des différentielles et quotients différentiels. Pas de contexte.

Auteur : Dedekind, Richard
X-10-00070 p 43.pdf
Esquisse de preuve du Modulgesetz.

Auteur : Dedekind, Richard
X-10-00069 p 41.pdf
Théorème daté du 27 oct. 1890.
Esquisse de preuve.

Auteur : Dedekind, Richard
X-10-00068 p 40.pdf
Calculs et tableau visiblement liés à la page suivante (p. 41, item 289)

Mots-clés :

Auteur : Dedekind, Richard
X-10-00067 p 39.pdf
Calculs sur les bases des modules finis. À lire avec la page précédente, ie l'item 285 (X 10 p. 38) ?

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00066 p 38.pdf
Récapitulatif d'égalités pour les opérations entre modules. Organisation en colonnes pour mettre en avant la dualité. Calculs sur les bases (bien que les modules ne soient pas présentés comme modules finis ?).

Auteur : Dedekind, Richard
X-10-00065 p 37.pdf
Recto : calculs qui ne sont pas liés aux modules ? Verso : quelques calculs sur les modules finis et la divisibilité

Auteur : Dedekind, Richard
X-10-00064 p 36+42.pdf
Courts calculs sur les modules finis.

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00063 p 35.pdf
Calculs sur les modules finis a, b : calculs des bases de a–b

Mots-clés :

Auteur : Dedekind, Richard
X-10-00062.pdf

Page 34r : première moitié "Zweigliedrige Schaaren Ω, Ω'. Directe Basen Verwandschaft" raturé.
Deuxième moitié Zweigliedrige Moduln.

Mots-clés :

Auteur : Dedekind, Richard
X-10-00023.pdf
Publicité sans notes

Auteur : Dedekind, Richard
X-10-00022.pdf
Page 30r : publicité, calculs épars. Page 30v : calculs sur des modules finis (base 2 éléments), calculs sur exemples numériques. Page 31r : page avec le titre "Zweigliedrige Moduln". Réflexions sur la divisibilité. Calculs. Page 31v. Fin ? Proposition de notation différente.

Auteur : Dedekind, Richard
X-10-00065 p 37.pdf
Présentation en colonnes des propriétés (duales) de + et –. Puis calculs sur des bases de modules finis.

Auteur : Dedekind, Richard
X-10-00021_000001.jpg
Page 28r : liste de modules finis avec notation 123 (?) 

Page 28v :
La divisibilité d'un module m par un module n sera complètement exprimée par chacune de ces 3 égalités : (m,n)=1 ; m+n=n ; m–n=n.
Tableau montrant la dualité entre les propriétés de + et –.

Page 29r :
Propriétés des nombres de classes par à la divisibilité.

Page 29v :
Suite du recto.

Auteur : Dedekind, Richard
X-10-00020_000001.jpg
Seulement 4 lignes, apparemment interrompu – lié au Modulgesetz.

Mots-clés : , ,

Auteur : Dedekind, Richard
X-10-00019_000001.jpg
Brefs calculs sur des modules finis

Mots-clés :

Auteur : Dedekind, Richard
X-10-00017_000001.jpg
Formation d'un groupe engenrdré par 3 modules donnés quelconques a, b, c, rang d'un module engendré par application des opérations.
Tableau des modules selon leur rang.
Nombre de classes.

Auteur : Dedekind, Richard
X-10-00016_000001.jpg
Tableau pour trois modules a, b, c. Difficile de statuer sur son contenu. Concerne des modules finis.Co

Auteur : Dedekind, Richard
X-10-00015_000001.jpg
Première page, calculs sur modules finis générés par 2 éléments. Deuxième page : ancienne notation, application de la théorie générale des trois modules à des modules générés par 2 éléments.

Auteur : Dedekind, Richard
X-10-00014_000001.jpg
Pour trois modules a, b, c, calculs sur les nombres de classes

Auteur : Dedekind, Richard
X-10-00013_000001.jpg
Tableau des Nächste Vielfache et Nächste Theiler avec classes de nombres

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00012_000001.jpg
Si a>p>a+b, on construit pour chaque tel module p un module correspondant q=a-b, alors a-b>q>b et p=q+a. Réciproquement, si a-b>q>b, et on construit pour chaque tel module q un module p=q+a, alors a>p>a+b et q=p-b.
Alors, le groupe P de tous les modules p vérifiant la condition a>p>a+b est en correspondance mutuelle uniforme avec le groupe Q de tous les modules q qui vérifient b<q<b-a.
Dessin.

En marge autour du résultat : calculs de combinaisons et chaînes mais est-ce vraiment en lien?

Auteur : Dedekind, Richard
X-10-00011_000001.jpg
Définition de a''', b''', c''', a'', b'', c''. Quand a-t-on a'''<c''<c ?

Auteur : Dedekind, Richard
X-10-00010_000001.jpg
Modules finis de la forme [p1+q1w, p2+q2w ... pm+qmw] = [n, p+qw]. Déterminer n, p, q.

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00009_000001.jpg
[ha, hb+cw] avec a, b premiers entre eux. Calculs.

Mots-clés :

Auteur : Dedekind, Richard
X-10-00008_000001.jpg
Trois modules a, b, c. Propriétés de divisibilité. Liste des "Abtheilungen" (sections, comme des sous-groupes) notés (a1), (a''), etc. et étude de leurs relations. Verso : nombre de classes, congruences, pour des Abtheilungen d'après la notation entre parenthèses MAIS lettres différentes — peut-être exemple sur modules finis.

Auteur : Dedekind, Richard
X-10-00006_000001.jpg

Page 8. Deux chaînes de modules a (m membres) et b (n membres), on construit c=a-b et d=a+b. Étude des différentes relations. En marge : "Les PGCD formés par a, b, a-b correspondent aux PPCM formés par a, b, a+b et forment donc un groupe."
Manipulation des opérations et relations autour du Modulgesetz. Généralisation de l'égalité à un nombre quelconque de modules.
Théorème général et preuve.

Au verso, quelques notes (mêmes égalités ?) avec la notation des morphismes / Abbildungen.


Page 9. Suite des calculs pour la preuve du théorème.

Séparation. Etude pour trois modules. Operations, Treppen, diagrammes, Ketten.

Verso : Schöner Satz falsch, 1889. 1. 4. 
Calculs sur des modules finis (exemple ?)

Auteur : Dedekind, Richard
X-10-00005_000001.jpg
Calculs sans contexte sur modules et chaînes.

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00004_000001.jpg
Courte étude des conditions pour avoir c3>b''' et c3<b''' ? Puis de (a+b)-c<(a-c)+b suit (a+b)-c=(a-c)+b

Auteur : Dedekind, Richard
X-10-00002_000001.jpg
Tableau de toutes les combinaisons possibles pour 4 modules notés 1, 2, 3 et 4 avec opérations + et – Colonne indiquant le nombre de cas possibles selon le nombre d'opérandes

Auteur : Dedekind, Richard
X-10-00001_000001.jpg
Chaîne de modules b1 < ... < bn et un module a, alors on forme a+b1<a+b2<...<a+bn<a<a-b1<a-b2<... Exemple avec n=2, modules bi notés 1, 2, 3 et a noté 0. Calcul de toutes les combinaisons possibles, Treppen, voisins...

Auteur : Dedekind, Richard
X-10-00000_000001.jpg
Modulgruppen (ou chaînes) simples : 1<2<3<...

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 40_000001.jpg
Avec condition particulière, étude des éléments générés par 3 modules, des relations entre éléments, propriétés de divisibilité, nombres de classes, etc. Petit tableau. Egalement quelques petits calculs avec des notations en majuscule cursive (groupes ?).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 39_000001.jpg
Brefs calculs et tableaux pour des éléments "de type module" où l'opération est représentée par φ.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 38_000001.jpg
Tableau sans titre avec plusieurs modules par colonne. Divisibilité et Treppen ?

Mots-clés : , ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 36_000002.jpg
Un O signifie que le module sur la colonne n'est pas divisible par le module sur la ligne. Une case vide signifie le contraire. + Comment retrouver le pgcd et le ppcm de 2 modules dans le tableau.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 35_000001.jpg
Réécriture des éléments générés par trois modules avec la notation a'''=b+c, a3=b–c, etc.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 34_000001.jpg
A groupe de modules, construction et étude d'un autre groupe de modules (appelé Moduln Gruppe). Étude des lois / propriétés, des éléments générés, des relations de divisibilité (avec les "Treppen")

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 33_000001.jpg
Tableau des PGCD et PPCM. Liste du nombre de fois qu'apparaissent chaque PGCD, PPCM.

Mots-clés : , ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 32_000001.jpg
Mise au propre des divers calculs pour 3 modules. Dans des cadres : liste éléments, unmittelbare Nachbaren, cas des idéaux, nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 31_000001.jpg
Calculs sur des modules finis (détails).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 30_000001.jpg
Détails des calculs sur 3 modules finis a, b, c
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2