Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 7 résultats dans 142 notices du site.
Mot(s)-clef(s) recherché(s) : meilleure, presentation

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 32_000001.jpg
Mise au propre des divers calculs pour 3 modules. Dans des cadres : liste éléments, unmittelbare Nachbaren, cas des idéaux, nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 33_000001.jpg
Tableau des PGCD et PPCM. Liste du nombre de fois qu'apparaissent chaque PGCD, PPCM.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 34_000001.jpg
A groupe de modules, construction et étude d'un autre groupe de modules (appelé Moduln Gruppe). Étude des lois / propriétés, des éléments générés, des relations de divisibilité (avec les "Treppen")

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 35_000001.jpg
Réécriture des éléments générés par trois modules avec la notation a'''=b+c, a3=b–c, etc.

Auteur : Dedekind, Richard
X-10-00000_000001.jpg
Modulgruppen (ou chaînes) simples : 1<2<3<...

Auteur : Dedekind, Richard
X-10-00015_000001.jpg
Première page, calculs sur modules finis générés par 2 éléments. Deuxième page : ancienne notation, application de la théorie générale des trois modules à des modules générés par 2 éléments.

Auteur : Dedekind, Richard
X-10-00027.pdf
Tentative de généralisation du Modulgesetz (non nommé). Notation mixte. Plusieurs théorèmes avec tentative de preuves.
Fin du manuscrit : Einfacher ausgedrückt + mention de la dualité. Ces réflexions autour de l'application du Modulgesetz à un nombre quelconque de modules donne :
(d1-m)+(d2-m)+...+(dn-m)=d+m avec d=d1-d2-...
et son dual.
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2