Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 54 résultats dans 144 notices du site.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 5_000001.jpg
Pour ρ=0 et δ=1 solution unique des conditions ρ+δ=1, ρc1>b1, δc1>a, alors on doit avoir cdifférent de 0, et de plus c1>a et b1-a=a-b=c3=0. La suite se déduit de la théorie des trois modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 9_000001.jpg
Calculs + et - sur des modules finis. Résultats sur les Modulgruppen avec hypothèse b+c=c+a=a+b et a+b+c=d'''' Dans le Modulgruppe généré par 3 modules, il faut que le nächste Vielfache de a, b, c soit a+b+c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 37-page-001.jpg
Tableau pour la théorie des trois modules, relations de divisibilité : le signe + signifie que le module sur la ligne est diviseur du module dans la colonne. Le signe – signifie que le module sur la ligne est multiple du module dans la colonne.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s)_000001.jpg
A partir de trois modules a, b, c, avec opérations + et –, génération

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 1_000001.jpg
Ensemble de calculs et petites rédactions autour des opérations et de la divisibilité entre modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 2_000001.jpg
Pages de calculs sur des modules (supposément). Essentiellement nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 3_000001.jpg
Liste des différentes combinaisons possibles + et – pour trois modules a, b, c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 8_000001.jpg

Si m>θ, alors on a toujours (p+m)-θ=(p-θ)+m.

Preuve "insuffisante".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 9_000001.jpg
Recherches autour du Modulgesetz, petits calculs et tentative de preuve.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 10_000001.jpg
Recto : grand tableau corrigé au fur et à mesure de son élaboration. Verso : calculs divisibilité, nombre de classes. En fin de page : "Symétrie en fonction de a, b, c !!!".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 11_000002.jpg
Recto : liste d'égalités pour 3 modules a, b, c. PGCD, PPCM, divisibilité et chaînes. Verso : étude de certaines chaînes et tentative de représentation par des diagrammes similaires à ceux utilisés aujourd'hui pour les treillis.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 12_000001.jpg
Liste de relations de divisibilité et chaînes en deux "colonnes" (pour < et >).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 13_000001.jpg
Calculs sur la divisibilité et les nombres de classes pour 3 modules. Conclusion : symétrie en fonction de a, b ,c.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 15_000001.jpg
Étude des opérations pour 3 idéaux a, b, c. Liste des éléments engendrés, étude des propriétés.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 16_000001.jpg
Recto : Tableau des éléments pour 3 modules a, b, c. Représentation diagrammatique des chaînes (treillis). Tentative de représentation des relations de divisibilité dans une sorte de tableau. Liste des modules dans l'ordre de leur nombre de diviseurs directs (nächste Vielfach), liste de chaînes. Étude de propriétés des nombres de classes. Verso : Avec une condition particulière, étude des éléments, chaînes, diagrammes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 17_000001.jpg
Liste d'éléments pour 3 modules. Organisé en colonnes numérotées. Correction de la place de certains éléments. Pas terminé.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 18_000001.jpg
Recto : Calculs sur les classes de nombres. Verso : Tableau, chaînes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 19_000001.jpg
Liste éléments et "théorèmes" sur les relations entre éléments pour le Modulgruppe engendré par 3 modules. Unmittelbare Nachbaren, chaînes, application aux idéaux.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 20_000001.jpg
Calculs sur les nombres de classes et relations entre opérations. Application aux idéaux. Cas général : (b-b')+(c-c')=(c-c')+(a-a')=(a-a')+(b-b') et dual.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 21_000001.jpg
Calculs sur les nombres de classes et lien avec les normes des idéaux.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 22_000001.jpg
Propriétés des nombres de classes pour 3 modules a, b, c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 24_000001.jpg
Calculs sur des modules finis suivis des lois générales.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 26_000001.jpg
Deux parties : calculs sur modules finis, puis cas des idéaux.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 27_000001.jpg
Calculs sur des modules finis.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 28_000001.jpg
Calculs sur des modules finis

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 32_000001.jpg
Mise au propre des divers calculs pour 3 modules. Dans des cadres : liste éléments, unmittelbare Nachbaren, cas des idéaux, nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 35_000001.jpg
Réécriture des éléments générés par trois modules avec la notation a'''=b+c, a3=b–c, etc.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 36_000001.jpg
Un O signifie que le module sur la colonne n'est pas divisible par le module sur la ligne. Une case vide signifie le contraire. + Comment retrouver le pgcd et le ppcm de 2 modules dans le tableau.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 38_000001.jpg
Tableau sans titre avec plusieurs modules par colonne. Divisibilité et Treppen ?

Mots-clés : , ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 40_000001.jpg
Avec condition particulière, étude des éléments générés par 3 modules, des relations entre éléments, propriétés de divisibilité, nombres de classes, etc. Petit tableau. Egalement quelques petits calculs avec des notations en majuscule cursive (groupes ?).

Auteur : Dedekind, Richard
Brouillon1900.pdf
Première rédaction de l'article de 1900

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard

Cod_Ms_R_Dedekind_X_11_2 (glissé(e)s) 4_000001.jpg

Mots-clés : ,

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_2 (glissé(e)s) 6_000001.jpg

Mots-clés : ,

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard
X-10-00004_000001.jpg
Courte étude des conditions pour avoir c3>b''' et c3<b''' ? Puis de (a+b)-c<(a-c)+b suit (a+b)-c=(a-c)+b

Auteur : Dedekind, Richard
X-10-00006_000001.jpg

Page 8. Deux chaînes de modules a (m membres) et b (n membres), on construit c=a-b et d=a+b. Étude des différentes relations. En marge : "Les PGCD formés par a, b, a-b correspondent aux PPCM formés par a, b, a+b et forment donc un groupe."
Manipulation des opérations et relations autour du Modulgesetz. Généralisation de l'égalité à un nombre quelconque de modules.
Théorème général et preuve.

Au verso, quelques notes (mêmes égalités ?) avec la notation des morphismes / Abbildungen.


Page 9. Suite des calculs pour la preuve du théorème.

Séparation. Etude pour trois modules. Operations, Treppen, diagrammes, Ketten.

Verso : Schöner Satz falsch, 1889. 1. 4. 
Calculs sur des modules finis (exemple ?)

Auteur : Dedekind, Richard
X-10-00008_000001.jpg
Trois modules a, b, c. Propriétés de divisibilité. Liste des "Abtheilungen" (sections, comme des sous-groupes) notés (a1), (a''), etc. et étude de leurs relations. Verso : nombre de classes, congruences, pour des Abtheilungen d'après la notation entre parenthèses MAIS lettres différentes — peut-être exemple sur modules finis.

Auteur : Dedekind, Richard
X-10-00011_000001.jpg
Définition de a''', b''', c''', a'', b'', c''. Quand a-t-on a'''<c''<c ?

Auteur : Dedekind, Richard
X-10-00014_000001.jpg
Pour trois modules a, b, c, calculs sur les nombres de classes

Auteur : Dedekind, Richard
X-10-00015_000001.jpg
Première page, calculs sur modules finis générés par 2 éléments. Deuxième page : ancienne notation, application de la théorie générale des trois modules à des modules générés par 2 éléments.

Auteur : Dedekind, Richard
X-10-00016_000001.jpg
Tableau pour trois modules a, b, c. Difficile de statuer sur son contenu. Concerne des modules finis.Co

Auteur : Dedekind, Richard
X-10-00017_000001.jpg
Formation d'un groupe engenrdré par 3 modules donnés quelconques a, b, c, rang d'un module engendré par application des opérations.
Tableau des modules selon leur rang.
Nombre de classes.

Auteur : Dedekind, Richard
Untitled 8.jpg
Énoncé du Modulgesetz. Étude d'un Dualgruppe généré par 3 modules avec condition (1) (lié au Modulgesetz).

Auteur : Dedekind, Richard
p12.jpg
Petit tableau. Calcul d'Excidenzen et d'Incidenzen. Etude des "Stufen" dans un Dualgruppe donné.

Auteur : Dedekind, Richard
p16.jpg
Au dessus du titre original : "Ancienne notation". Mise au propre de calculs rencontrés de nombres fois (cf relations).

Auteur : Dedekind, Richard
X-10-00070 p 43.pdf
Esquisse de preuve du Modulgesetz.
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2