Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 144 résultats dans 144 notices du site.

Auteur : Dedekind, Richard
X-10-00030.pdf
Recherches autour des propriétés des opérations pour 4 modules. Notation mixte car la notation 123 ne permet pas d'aller très loin.
Dessins pour représenter les "niveaux".

Mots-clés : ,

Auteur : Dedekind, Richard
p4-10.pdf
Calculs qui semblent être liés au contenu de l'article de 1897. Changements de notation au cours des calculs.

Mots-clés : , ,

Auteur : Dedekind, Richard
p3.pdf
Calculs liés à ce qui est présenté dans l'article de 1897.

Mots-clés : ,

Collection : Aucune collection
Auteur : Dedekind, Richard
Remarques sur Schröder.pdf
Deuxième set de notes sur l'Algebra der Logik. Plus développé (et propre) que le premier. Mentionne à la fois le nom "Dualgruppen" et l'idempotence comme propriété fondamentale, donc semble avoir été rédigé dans à un moment proche du texte "Dualismus".

Auteur : Dedekind, Richard
Schroeder.pdf
Notes de lecture. Cf. (Haffner, 2022) pour une traduction partielle en anglais.

Mots-clés : ,

Auteur : Dedekind, Richard
p11-12.pdf
Tableaux très propres au dos d'un emploi du temps de 1878. Théorie des 3 modules de type idéal et théorie des trois modules cas général en vis-à-vis avec "nächste Vielfache" et "nächste Theiler" (pour étudier les chaînes ?). Théorie des 3 modules de type idéal, tableau des éléments du groupe.

Auteur : Dedekind, Richard
p58.pdf
Courtes recherches sur le "groupe" généré par 3 éléments, avec opérations généralisées.

Auteur : Dedekind, Richard
p56-57.pdf
Généralisation des opérations définies pour les modules avec notation générale de théorie des ensembles. Notes pour trouver l'exemple le plus simple ne vérifiant pas le Modulgesetz

Auteur : Dedekind, Richard
p53 va avec 59_Page_1.jpg
Recherches écrites au dos d'un emploi du temps universitaire plié en 2 et contenant plusieurs feuillets.
  • p. 53r est une page intérieure de cet emploi du temps mais la 3e page des recherches de Dedekind
  • p. 53v est la première page externe de l'emploi du temps
  • p. 54r, sur une feuille séparée, est la première page des notes de Dedekind (au dos d'une lettre)
  • p. 55-58 sont liées mais antérieures (cf. relations)
  • p. 59r est la 2e page externe de l'emploi du temps 
  • p. 59v est une page intérieure de l'emploi du temps et la 2de page de notes de Dedekind
  • p. 60 est également un feuillet séparé et poursuit la page 53r.
Ordre de lecture : p. 54r, p. 59v, p. 53r, p. 60.

Auteur : Dedekind, Richard
p15.jpg
Grand tableau PGCD/PPCM avec notation3 et détail des définitions. Etude de la dualité dans les nombres de classes.

Auteur : Dedekind, Richard
p14.jpg
Commence par une étude du "groupe" généré par 3 modules ou trois groupes abéliens. Reformulation dans la notation utilisée pour la théorie des groupes (eg Modulgesetz). Étude du treillis formé par les sous-groupes normaux.

Auteur : Dedekind, Richard
p11.jpg
Étude de la "Verwandschafdt" et des "familles" de modules telles que définis dans les Vorlesungen de Dirichlet (référence à édition de 1871, p. 490). Calcul de "distances" entre modules (ie nombres de "marches" dans "l'escalier") et organisation de ces distances dans un tableau.

Auteur : Dedekind, Richard
X-10-00031 p 53-57.pdf

Corrections sur le §184 (= §178 de la 3e édition) pour l'édition de 1894 des Vorlesungen de Dirichlet.
Il s'agit du paragraphe sur le nombre de classes d'idéaux.

Attention les pages dans le désordre. L'ordre de lecture semble être : p. 57v (57r = imprimé) puis p. 53 à p. 56.

Auteur : Dedekind, Richard
X-10-00029 p 51.pdf
Colonnes donnant notamment certaines relations entre modules. Manque de contexte pour être sûr de ce que signifient les autres colonnes + le tableau semble ne pas avoir été terminé.

Auteur : Dedekind, Richard
X-10-00063 p 35.pdf
Calculs sur les modules finis a, b : calculs des bases de a–b

Mots-clés :

Auteur : Dedekind, Richard
X-10-00071 p 50.pdf
Deux théorèmes avec (esquisse de) preuve :
- Soit d module non divisible par des modules p, q, alors il existe toujours des nombres dans d qui sont ni dans p ni dans q.
- Mais dès qu'on considère trois modules p, q, r, le théorème cesse d'être valide. On peut construire une infinité d'exemples.

Mots-clés :

Auteur : Dedekind, Richard
X-10-00028 p 49.pdf
Feuillet commence par un tableau non terminé. Liste des Treppen. Petits calculs autour du Modulgestz. NB : La disposition des écritures permet-elle de mettre en avant la "symétrie" ou "dualité" ?

Auteur : Dedekind, Richard
X-10-00027.pdf
Tentative de généralisation du Modulgesetz (non nommé). Notation mixte. Plusieurs théorèmes avec tentative de preuves.
Fin du manuscrit : Einfacher ausgedrückt + mention de la dualité. Ces réflexions autour de l'application du Modulgesetz à un nombre quelconque de modules donne :
(d1-m)+(d2-m)+...+(dn-m)=d+m avec d=d1-d2-...
et son dual.

Auteur : Dedekind, Richard
X-10-00026.pdf
Pages mélangées. p. 46r : quelques calculs, suite de p. 47v. p. 46v : vierge. p.47r : quelques recherches sur le Modulgesetz au crayon par dessus une invitation. p. 47v : calculs sur les modules finis (encre).

Auteur : Dedekind, Richard
X-10-00025.pdf
Grand feuillet plié en deux : - égalités / Modulgesetz - égalités / nombre de classes

Auteur : Dedekind, Richard
X-10-00024 p 44.pdf
Calculs sur des différentielles et quotients différentiels. Pas de contexte.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_2 (glissé(e)s) 6_000001.jpg

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00069 p 41.pdf
Théorème daté du 27 oct. 1890.
Esquisse de preuve.

Auteur : Dedekind, Richard
X-10-00068 p 40.pdf
Calculs et tableau visiblement liés à la page suivante (p. 41, item 289)

Mots-clés :

Auteur : Dedekind, Richard
X-10-00067 p 39.pdf
Calculs sur les bases des modules finis. À lire avec la page précédente, ie l'item 285 (X 10 p. 38) ?

Mots-clés : ,

Auteur : Dedekind, Richard
X-10-00066 p 38.pdf
Récapitulatif d'égalités pour les opérations entre modules. Organisation en colonnes pour mettre en avant la dualité. Calculs sur les bases (bien que les modules ne soient pas présentés comme modules finis ?).

Mots-clés : , ,

Auteur : Dedekind, Richard
X-10-00065 p 37.pdf
Recto : calculs qui ne sont pas liés aux modules ? Verso : quelques calculs sur les modules finis et la divisibilité

Auteur : Dedekind, Richard
X-10-00064 p 36+42.pdf
Courts calculs sur les modules finis.

Mots-clés : ,

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 39_000001.jpg
Brefs calculs et tableaux pour des éléments "de type module" où l'opération est représentée par φ.

Auteur : Dedekind, Richard

Auteur : Dedekind, Richard
Satze Modulgruppen_000001.jpg
Définition des opérations entre modules, études des propriétés. Certains résultats se retrouvent dans les Dualgruppen, d'autres en théorie des nombres. NB seulement des modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 9_000001.jpg
Recherches autour du Modulgesetz, petits calculs et tentative de preuve.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 8_000001.jpg

Si m>θ, alors on a toujours (p+m)-θ=(p-θ)+m.

Preuve "insuffisante".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 6_000001.jpg
Liste d'égalités pour les modules. Tableaux de multiples, sommes. Vérification selon conditions. Vérification associativité. Paragraphe sur la "source du dualisme" (qui est ici le Modulgesetz).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 5_000002.jpg
Recto. Etude de propriétés des opérations + et –. Première liste (numérotée de 1 à 6) montre dualité. Liste de 3 hypothèses et étude de ce qui en résulte pour les 6 égalités données au dessus. Verso. Hypothèse supplémentaire. Théorème : Si m>d, et p quelconque, alors (p+m)-d=(y-d)+m. Preuve sans nouveau principe. (Pas la conclusion qu'il voudrait.)

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 4_000001.jpg
Etude de lois et propriétés des opérations (pour modules) dans des conditions particulières. Semi-rédigé.

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 3_000001.jpg
Liste des différentes combinaisons possibles + et – pour trois modules a, b, c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 2_000001.jpg
Pages de calculs sur des modules (supposément). Essentiellement nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 1_000001.jpg
Ensemble de calculs et petites rédactions autour des opérations et de la divisibilité entre modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s)_000001.jpg
A partir de trois modules a, b, c, avec opérations + et –, génération

Auteur : Dedekind, Richard
quelques pages dont il faut décider si elles vont avec dualismus ou pas_000001.jpg
Etude assez générale semi-rédigée d'un système non-modulaire. Pas de mention des Dualgruppen. Références aux Vorlesungen 1894.

Auteur : Dedekind, Richard
modules old_000003.jpg
Texte rédigé sur la théorie des modules. Titre alternatif : "Théorèmes généraux sur les modules, ordres et congruences". Définition des opérations et étude de diverses propriétés. Un des premiers écrits sur le sujet.

Auteur : Dedekind, Richard
modules old_000001.jpg
Tableau mettant en avant la dualité entre les deux opérations pour les modules.

Auteur : Dedekind, Richard
p 28_000001.jpg
Théorème sur les modules : Les modules σr (r parcourt les entiers) forment une chaîne donnée, alors un groupe est engendré qui vérifie certaines conditions...
Preuve du résultat.

Auteur : Dedekind, Richard
dualismus_000001.jpg
Texte entièrement rédigé, initialement tiré "Sur le dualisme dans la théorie des modules", corrigé plus tard pour être titré "Sur les Dualgruppen". Transcription à venir.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 11_000002.jpg
Recto : liste d'égalités pour 3 modules a, b, c. PGCD, PPCM, divisibilité et chaînes. Verso : étude de certaines chaînes et tentative de représentation par des diagrammes similaires à ceux utilisés aujourd'hui pour les treillis.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 26_000001.jpg
Tableau de Nächste Vielfache et Nächste Theiler. Comparaison de deux notations (cf titre) ? Verso Tableau 3 modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 24_000001.jpg
Petits calculs sur des modules et nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 37-page-001.jpg
Tableau pour la théorie des trois modules, relations de divisibilité : le signe + signifie que le module sur la ligne est diviseur du module dans la colonne. Le signe – signifie que le module sur la ligne est multiple du module dans la colonne.
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2