Dedekind

Brouillons de Richard Dedekind : étude génétique


Votre recherche dans le corpus : 142 résultats dans 142 notices du site.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 0_000001.jpg
Court texte sur les groupes. Deux groupes A et B forment un groupe H en prenant les couples (a,b). 8 propriétés sans preuve. 8 propriétés pour définir la nouvelle loi de composition. Au dos d'une lettre.

Mots-clés :

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 1_000001.jpg
Dualgruppe (sans Modulgesetz) généré par a, b, c avec la condition spéciale Annahme : b-c=c-a=a-b. Propriétés du Dualgruppe étudié. Références à des lois numérotées mais lesquelles ? lois définissant les Dualgruppen ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 2_000001.jpg
Texte rédigé mais incomplet? sur le "dualisme" dans la théorie des modules de nombres. (Description à compléter page à page)

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 3-0001.jpg
Comparaison entre les modules (colonne de droite) et les groupes dans l'article de Frobenius et Stickelberger, "Ueber Gruppen von vertauschbaren Elementen", Journal für die reine und angewandte Mathematik, 1886. Parallèle entre les deux approches, qui revient à un parallèle entre cas multiplicatif et cas additif pour les groupes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 4_000001.jpg
Page 11r : Complexe de nombres et éléments distingués. Au crayon sur une invitation de 1893.
Page 11v : calculs de + et - pour des éléments dont la nature n'est pas précisée. Tableaux.
Page 12r : Calculs suite. Calculs sur nombres.
Page 12v : tableau PGCD / PPCM, tableau divisibilité, calculs normes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 5_000001.jpg
Pour ρ=0 et δ=1 solution unique des conditions ρ+δ=1, ρc1>b1, δc1>a, alors on doit avoir cdifférent de 0, et de plus c1>a et b1-a=a-b=c3=0. La suite se déduit de la théorie des trois modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 6_000001.jpg
Petits calculs sur des ensembles ("Complex") avec ⊂ et inverses. Peut-être lié à Schröder ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 7_000001.jpg
Calculs sur des modules finis.
Congruences, théorie des nombres.

Théorème page 16v : Soit un module dont la base a un élément
11, ..., αmm]= o=\sum[αii]=[w],
et soit
a =\sum [αi],
b=\sum [βi],
c w=\sum [αiβi'i'βi],
alors on peut trouver 2 modules dont la base a un élément, [α], [β] tels que
a=[α]+c
b=[β]+c

Preuve interrompue.

Le théorème suit-il des calculs ?

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 8_000001.jpg
Calculs sur des modules finis. Congruences, théorie des nombres.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 9_000001.jpg
Calculs + et - sur des modules finis. Résultats sur les Modulgruppen avec hypothèse b+c=c+a=a+b et a+b+c=d'''' Dans le Modulgruppe généré par 3 modules, il faut que le nächste Vielfache de a, b, c soit a+b+c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 10_000001.jpg
Calculs des combinaisons. Tableau de nombres difficile à comprendre. Noté à la fin du tableau "Amben" qui semble signifier "Combinaison de deux variables dans le calcul de la combinaison".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 11_000001.jpg
Calculs, tableaux, diagrammes sur des "groupes".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 12_000001.jpg
Recto : Tableaux de groupes et petit diagramme similaire à p. 20. Verso : Distances entre modules.

Mots-clés : , ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 13_000001.jpg
Recto : Tableau exactement similaire à la page précédente. Verso : notes personnelles et tableau de nombres (?). Quelques calculs de développement de fonctions au stylo.

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 14_000001.jpg
Tableau de comparaison entre les modules et les groupes. Comparaison systématique des diverses propriétés : opérations, divisibilité, lois, nombres de classes...

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 15_000001.jpg
Recto : S système de modules. Définition d'une différentielle partielle, d'une intégrale, puis d'un système formé de modules de la forme a-∂S/∂a=a1 a+∂S/∂a=a', et itération...
Verso : publicité, suite des calculs (avec seulement + et - entre modules comme définis au recto).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 16_000001.jpg
Soit [m,n,p]=[1], alors on doit choisir es nombres entiers rationnels u, v tels que k=[mv,mu-pv]=[1]. Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 17_000001.jpg
Suite (ou morceau) des calculs de la page précédente.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 19_000001.jpg
Suite des calculs de la page précédente. Vers la fin de la page, question supplémentaire : Peut-être choisir q mod p tel quel q soit relativement premier à n ? Réponse au problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 18_000001.jpg

Soient [mα, pα+nβ] et uα+vβ; trouver le plus petit nombre naturel e pour lequel e(uα+vβ)=xmα+y(pα+nβ), et eu=mx+py ; ev=un.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 20_000001.jpg
Calculs sur des modules finis et sur leur base.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 21_000001.jpg

o=[α,β] irréductible, et soit le multiple m=[α',β'] avec α'=caα', β'=a'aα+bβ ; [c,a']=[1] ; a, b entiers naturels. Trouver tous les modules n=[α'', β''] qui sont diviseurs de m et multiples de o.

Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 22_000001.jpg
Trouver tous les modules [aα,cα+bβ] qui sont multiples de [α,β] et diviseurs de [mα, pα+nβ]. Résolution du problème.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 37-page-001.jpg
Tableau pour la théorie des trois modules, relations de divisibilité : le signe + signifie que le module sur la ligne est diviseur du module dans la colonne. Le signe – signifie que le module sur la ligne est multiple du module dans la colonne.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 23_000001.jpg
Soit deux modules a,b donnés avec conditions initiales. Trouver tous les modules c qui vérifient a+b

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 24_000001.jpg
Petits calculs sur des modules et nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 25_000001.jpg
Calculs sur des modules et petits tableaux récapitulatifs. Tableaux donnant les "nächste Vielfache" et "Nächste Theiler" (chaînes). Brève considération d'une représentation (Abbildung) dans un Modulgruppe.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_9 (glissé(e)s) 26_000001.jpg
Tableau de Nächste Vielfache et Nächste Theiler. Comparaison de deux notations (cf titre) ? Verso Tableau 3 modules.

Auteur : Dedekind, Richard
dualismus_000001.jpg
Texte entièrement rédigé, initialement tiré "Sur le dualisme dans la théorie des modules", corrigé plus tard pour être titré "Sur les Dualgruppen". Transcription à venir.

Auteur : Dedekind, Richard
Satze Modulgruppen_000001.jpg
Définition des opérations entre modules, études des propriétés. Certains résultats se retrouvent dans les Dualgruppen, d'autres en théorie des nombres. NB seulement des modules.

Auteur : Dedekind, Richard
p 28_000001.jpg
Théorème sur les modules : Les modules σr (r parcourt les entiers) forment une chaîne donnée, alors un groupe est engendré qui vérifie certaines conditions...
Preuve du résultat.

Auteur : Dedekind, Richard
modules old_000001.jpg
Tableau mettant en avant la dualité entre les deux opérations pour les modules.

Auteur : Dedekind, Richard
modules old_000003.jpg
Texte rédigé sur la théorie des modules. Titre alternatif : "Théorèmes généraux sur les modules, ordres et congruences". Définition des opérations et étude de diverses propriétés. Un des premiers écrits sur le sujet.

Auteur : Dedekind, Richard
quelques pages dont il faut décider si elles vont avec dualismus ou pas_000001.jpg
Etude assez générale semi-rédigée d'un système non-modulaire. Pas de mention des Dualgruppen. Références aux Vorlesungen 1894.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s)_000001.jpg
A partir de trois modules a, b, c, avec opérations + et –, génération

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 1_000001.jpg
Ensemble de calculs et petites rédactions autour des opérations et de la divisibilité entre modules.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 2_000001.jpg
Pages de calculs sur des modules (supposément). Essentiellement nombres de classes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 3_000001.jpg
Liste des différentes combinaisons possibles + et – pour trois modules a, b, c

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 4_000001.jpg
Etude de lois et propriétés des opérations (pour modules) dans des conditions particulières. Semi-rédigé.

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 5_000002.jpg
Recto. Etude de propriétés des opérations + et –. Première liste (numérotée de 1 à 6) montre dualité. Liste de 3 hypothèses et étude de ce qui en résulte pour les 6 égalités données au dessus. Verso. Hypothèse supplémentaire. Théorème : Si m>d, et p quelconque, alors (p+m)-d=(y-d)+m. Preuve sans nouveau principe. (Pas la conclusion qu'il voudrait.)

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 6_000001.jpg
Liste d'égalités pour les modules. Tableaux de multiples, sommes. Vérification selon conditions. Vérification associativité. Paragraphe sur la "source du dualisme" (qui est ici le Modulgesetz).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 7_000001.jpg
Quelques calculs au crayon. Remarque du 17.11.1890 : "Cet exemple d'un "Summengruppe" ..."

Mots-clés : ,

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 8_000001.jpg

Si m>θ, alors on a toujours (p+m)-θ=(p-θ)+m.

Preuve "insuffisante".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 9_000001.jpg
Recherches autour du Modulgesetz, petits calculs et tentative de preuve.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 10_000001.jpg
Recto : grand tableau corrigé au fur et à mesure de son élaboration. Verso : calculs divisibilité, nombre de classes. En fin de page : "Symétrie en fonction de a, b, c !!!".

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 11_000002.jpg
Recto : liste d'égalités pour 3 modules a, b, c. PGCD, PPCM, divisibilité et chaînes. Verso : étude de certaines chaînes et tentative de représentation par des diagrammes similaires à ceux utilisés aujourd'hui pour les treillis.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 12_000001.jpg
Liste de relations de divisibilité et chaînes en deux "colonnes" (pour < et >).

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 13_000001.jpg
Calculs sur la divisibilité et les nombres de classes pour 3 modules. Conclusion : symétrie en fonction de a, b ,c.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 14_000001.jpg
Calculs sur des congruences pour étudier relation divisibilité entre modules.
Conclusion partielle : pour des modules quelconques, on a seulement a'''<amais pas a'''>adonc les conditions données au début sont nécessaires mais en général pas suffisantes.

Auteur : Dedekind, Richard
Cod_Ms_R_Dedekind_X_11_1 (glissé(e)s) 15_000001.jpg
Étude des opérations pour 3 idéaux a, b, c. Liste des éléments engendrés, étude des propriétés.
Formats de sortie

atom, dcmes-xml, json, omeka-xml, rss2